五年级数学《最小公倍数》教学反思
身为一名人民老师,课堂教学是重要的工作之一,在写教学反思的时候可以反思自己的教学失误,那么优秀的教学反思是什么样的呢?下面是小编整理的五年级数学《最小公倍数》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级数学《最小公倍数》教学反思1今天刚刚组织学生学习了"找最小公倍数"这一节的内容.在课的前部分,学生经过自己的预习基本能够懂得找最公倍数的一般方法,即先分别找出这两个或三个的倍数,再从中找出最小的.但是我们知道,这样太麻烦了.于是我便组织学生以小组为单位进行探究学习竞赛:你能用几种方法找出这组数的最小公倍数?
3和65和118和106,8和12
12和483,4和78,12和153,7和14
学生们在这种竞赛方式下的学习活动中表现得非常活跃,他们在学过的找最大公因数的基础上,很快找出几种有规律的情况:
第一种:两个数有倍数关系的,较大的数就是它们的最小公倍数;如3和6,12和48
第二种:两个数的最大公因数是1时,它们的积就是它们的最小公倍数.5和118和9
以上两种是比较特殊的情况,对于除此之外的其它情况行不通,那么其它的情况有没有快捷的方法呢?大家再研究研究看.一句话再次掀起学生的探索热情.经过一阵吵吵闹闹过后,一种种新鲜方法闪亮登场:
第三种:用短除法求取如8和1012和15他们从"你知道吗"和老课本中发现了.
第四种:学生们公认最便捷的方法,即用较大的数依次去乘234等,直到积也是较小的倍数时,这个积就是它们的最小公倍数.
第五种:最后出炉并占尽风头的一种,学生通过比较发现,几个数的最小公倍数与它们最大公因数有很大的关系:如8和10的最小公倍数是40,最大公因数是2,它们的关系是8乘10除以2等于40,所以两个数的最小公倍数等于这两个数的积除以它们的最大公因数,为了便于口算,也可以先用它们的最大公因数先去除其中一个数,再用商乘另一个数即可,如8和10,先用8除以2等于4,再乘10即是40.嘿嘿,真是妙吧.这学生呀,还真不能小瞧他们.只要老师肯放开自己教学的框框架架,给学生创造良好的求知氛围,敏于捕捉学生每个创新的思维火花,善于相机点拨与引导,这样的数学课堂肯定富有实效.
五年级数学《最小公倍数》教学反思2教学目标:
(一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。
(二)培养学生仔细、认真的做题习惯和比较的思维方法。
(三)培养学生观察、分析、比较的能力。
教学重点和难点:
最大公约数和最小公倍数异同点的比较。
教学用具:教具:小黑板,投影片。
教学过程设计:
(一)复习准备
1、什么叫最大公约数和最小公倍数?怎样求最大公约数和最小公倍数?
2、求下面各题的最大公约数和最小公倍数?(口答)
8和16,13和26,2和9,7和15
教师:对上面几道题你是怎么想的?各有什么特点?
明确:①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。
②两个数互质,最大公约数是1,最小公倍数是两个数乘积。
(二)学习新课
1.出示例4。
求30和45的最大公约数和最小公倍数。(要求学生独立完成。)
学生口述教师板书。33045
51015
23
30和45的最大公约数是:3×5=15
33045
51015
23
30和45的最小公倍数是:3×5×2×3=90
教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)
在讨论的基础上,总结出下面的结论。
求两个数的最大公约数
求两个数的最小公倍数
相同点
都要用短除法分解质因数
不同点
只要把除得的除数相乘
把除得的除数和商都相乘
教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?
明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。
教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例4怎样做简便?(由学生完成。)
2.出示做一做。
根据下面的短除,你能很快说出42和56的最大公约数和最小公倍数吗?
24256
72128
34
(三)巩固反馈
1.求下面各组数的最大公约数和最小公倍数。
30和18,75和35,16和72
9和31,20和12,100和30
2.判断正误并说明理由。
①互质的两个数没有最大公约数;
②两个数的最小公倍数,是这两个数的最大公约数的倍数;
③a与b的最大公约数是1,那么a与b的最小公倍数是ab;
④用短除法求两个数的最小公倍数时,可以用这两个数的公约数连续去除。
⑤17和51的最大公约数是17,
最小公倍数是:17×51=867。
3.选择正确答案的序号填在里。
(1)已知甲、乙两个数互质,那么甲、乙最大公约数是,最小公倍数是。
①1,②甲,③乙,④甲×乙
(2)已知a=2×3×2,b=2×3×5,那么a,b的最大公约数是,最小公倍数是。
①2×3②2×3×2③2×3×5④2×3×2×5
(四)课堂总结(学生总结)
1.求两个数的最大公约数,最小公倍数用一个短除式。
2.求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。
(五)布置作业:课本65页练习十一,11、12
课堂教学设计说明
本节新课教学分为两部分。
第一部分,教学例4,由学生独立求出最大公约数和最小公倍数。
第二部分,对比例4中最大公约数,最小公倍数的求法,讨论它们有什么异同点,结合算理找出解法不同之处的内在原因,从而总结出结论。
教学反思:知其然且知所以然——摆脱纯技能的训练
本节课教学是在学生学习分别求最大公约数和最小公倍数的基础上进行的,目的是让学生能够区 ……此处隐藏5715个字……。
通过今天的学习,你有什么收获?
本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。
板书设计:
最小公倍数(一)
4的倍数:4、8、12、16、20、24、28、36……
6的倍数:6、12、18、24、30、36……
4和6的公倍数:12、24、36……
4和6的最小公倍数:12
教后反思:
优点:本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。
不足:首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。
五年级数学《最小公倍数》教学反思11教学实录:
一.公倍数的意义
师:出示问题:用长3厘米,宽2厘米的长方形纸片分别铺两个边长6厘米和8厘米的正方形,可以正好铺满哪几个正方形?
学生思考后回答。
生:能铺满边长6厘米的正方形,因为边长6的正方形面积是36平方厘米,长方形面积是6平方厘米,36÷6=6个,用6个正好铺满。
师:那边长8厘米的正方形为什么不能正好铺满?
学生沉默。
师:我们接着他刚才的想法往下想。
生:正方形面积64平方厘米,64÷6=10……4,还多4平方厘米。
师:好的,还有别的想法吗?
学生沉默,教师引导。
师:我们一起来想想这6个长方形怎么铺,正好铺满边长6厘米的正方形
生:每排2个,摆3排。
生:6÷3=2个,6÷2=3个
师:很好,长3宽2的长方形除了正好铺满边长6厘米的正方形,还能铺满边长几厘米的正方形?
生:12、18、24、36……
师:这些数有什么特点?
生:既是2的倍数,又是3的倍数。
师揭题。像6、12、18、24、36……既是2的倍数又是3的倍数,它们是2和3的公倍数。现在再来说说为什么能正好铺满边长6厘米的正方形而不能铺满边长8厘米的正方形。
生:6是2和3的公倍数,8是2的倍数但不是3的倍数。(师:所以……)8不是2和3的公倍数。
二.找公倍数的方法
师:找出6和9的公倍数有哪些?
学生独立思考如何找公倍数,学生交流。
生:6和9的公倍数有18、36、54、72……
师:你是怎么找的?
生:先找18,再十位上加2,个位上加2……
师:这方法是能找出公倍数来,可总觉得不太保险,会不会有遗漏,有没有其他方法了。
生:找出6和9的倍数,再从中找出一样的。
师生共同找,(略)
师:这方法是保险了,但有点烦,有简单点的方法了吗?
学生思考。
生:找9的倍数,再从中找出6的倍数,因为先找6的倍数的话,比如第一个是6,比9小,肯定不是9的倍数。
师:大家觉得这方法怎样。老师觉得至少有两个优点,第一,比刚才的方法简单了,而且不会遗漏。第二,大家想,在一定的范围里,9的倍数可定比6的倍数要…(少)这样,考虑的数也就……(少)
师生一起找,先找9的倍数再找6的倍数。
生:还有方法,先找9的倍数,第一个是9,第二个是18,18是6和9的最小公倍数,那么以后的公倍数就只要依次加18.
师:刚才他提到的最小公倍数大家懂吗?
生:就是公倍数中最小的那个
师:哦。那我们来一起试试看。
三.教学韦恩图(略)
教后反思:
本课教学中,除了开始部分由于教学准备不足,学生思维有点跟不上外,在接下来的教学中,能有效的引导学生围绕着为什么能铺满,还能铺满边长几厘米的正方形,丰富学生对公倍数的感性认识,并在此基础上,抽象出公倍数的意义。能围绕着找公倍数的方法展开方法优劣的比较,让学生从中较为主动地自主学习有关公倍数的一系列知识点。本课上完后的体会是:一是教师的问题不宜过多,要有重点的设置几个即可,有益于学生在课堂学习总思维的连贯性和思考的深度。二是备课除了思路清晰外,一些细小的地方还应完善做得充分点。
五年级数学《最小公倍数》教学反思12前两天讲了《最小公倍数》,颇有感慨。
最小公倍数是一个内涵比较丰富的数学概念,为了帮助学生真正理解概念的涵义,教学中我们必须让学生亲身经历概念的形成过程,这样才有可能形成有意义的学习。
过去我们通常所采用的方法,让学生通过“找倍数---找公倍数---找公倍数中最小的一个”,在“纯数学”的范畴内经历概念的形成过程。这样的教学虽然突出了数学知识的内部联系,并能帮助学生在较短的时间内掌握需要学习的知识,能够“省下”较多的时间完成练习或学习更多的知识,但其不足之处也显而易见。比如, 学生无法体会到数学与外部生活世界的密切联系,无法充分利用已有的生活经验来帮助学习数学知识;形式化的、缺乏实际意义的学习任务也往往很难真正引起学生的学习兴趣学生的学习活动常是在老师的“命令”下被动地进行,等等。
为此,在本课的教学中,我通过对教材内容做适当的重组,使课堂里的数学能够以一种充满了数学知识间的联系和数学与生活的联系的整体呈现在学生的面前,从而构建一种生活化的数学课堂。具体地说,就是数学是来源于生活,从学生的现实生活中寻找一些能够“自动地”反映公倍数、最小公倍数内部结构特征的实际问题,让学生通过解决这些生动具体的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验;在此基础上,再引导学生从生活 “进到数学”,通过对实际问题的反思抽象,引出公倍数、最小公倍数等数学概念,并通过对解决问题过程的进一步提炼,总结出求最小公倍数的方法。这样,学生获取知识的过程被“拉长”了,花的时间可能也要稍多一些,但是,这一过程中,学生的学习积极性和主动性被充分地调动了起来,当他们面对那些生动有趣的实际问题时,会自觉地调动起已有的生活经验和那些“自己的”思维方式参与解决问题的过程中来,主动地借助各种外部的物质材料来展示自己内部的思维过程;通经历这一过程,学生能获得对数学知识更深刻的理解。同时,在这一过程中,学生不仅能清楚地体会到数学的内部联系,而且能真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。
构建生活化的数学课堂就是要让学生在“生活和“数学”的交替中体验数学,在“源”和“进”的互动中理解数学。通过“生活中的问题”,为数学习提供现实素材,积累直接经验;再通过“进到数学”,把生活常识、活动经验提炼上升为数学知识。
文档为doc格式